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Figure 1: Proposed HMD-based immersive environment for the exploration of dimensionally-reduced data scatterplots. The user is
equipped with two position-tracked hand controllers (left), being allowed to interact with the data through selection pointers (right).

ABSTRACT

The use of novel displays and interaction resources to support immer-
sive data visualization and improve analytical reasoning is a research
trend in the information visualization community. In this work, we
evaluate the use of an HMD-based environment for the exploration
of multidimensional data, represented in 3D scatterplots as a result
of dimensionality reduction (DR). We present a new modeling for
this problem, accounting for the two factors whose interplay deter-
mine the impact on the overall task performance: the difference in
errors introduced by performing dimensionality reduction to 2D or
3D, and the difference in human perception errors under different
visualization conditions. This two-step framework offers a simple
approach to estimate the benefits of using an immersive 3D setup
for a particular dataset. Here, the DR errors for a series of roll call
voting datasets when using two or three dimensions are evaluated
through an empirical task-based approach. The perception error and
overall task performance, on the other hand, are assessed through a
comparative user study with 30 participants. Results indicated that
perception errors were low and similar in all approaches, resulting
in overall performance benefits in both desktop and HMD-based 3D
techniques. The immersive condition, however, was found to require
less effort to find information and less navigation, besides providing
much larger subjective perception of accuracy and engagement.
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1 INTRODUCTION

Following consecutive breakthroughs in Virtual Reality (VR) re-
search, the visualization community has progressively explored the
use of immersive displays and new interaction devices to enhance
analytical reasoning [5]. Nonetheless, even though immersive 3D
visualizations present clear advantages and consolidated application
for scientific spatial data [6, 11], it still remains largely unclear if
and how these technologies can be properly applied to visualize
abstract information [10, 13]. Some promising results have already
been demonstrated, for example, in graph visualization [7, 17, 22].

In this work, we aim to expand this discussion, taking into con-
sideration 3D scatterplots representing dimensionally-reduced data.
Since this particular category of scatterplots, which is commonly
applied for multidimensional data visualization, is always analyzed
in terms of the distances between points, we hypothesize it could
benefit from stereoscopic displays, egocentric points of view and
more natural user interfaces, characteristics that are inherent to im-
mersive analytical setups. We focus specifically on studying the
application of an HMD-based environment to this problem (Fig. 1),
in comparison to desktop-based alternatives, which correspond to
the currently used solutions.

The use of 3D scatterplots has been controversial since long
before the first uses of immersion, with related studies dating back
to the 1970s [12]. In theory, a 3D representation allows clearer
spatial separation, reduced overplotting and faster construction of
a mental model [15]. Nevertheless, challenges such as difficulties
in navigation, perspective distortion, foreshortening and occlusion
have led multiple researchers to dismiss its utility. The use of 3D
scatterplots for the representation of dimensionally-reduced data
is often discussed. Adding an extra component could potentially
reduce information loss in the process, but results from studies
on quantifying visual analysis gains have been contradictory [15,
27]. Few authors, however, have investigated how immersion and
stereopsis may impact on these issues. Moreover, most of them have
only provided preliminary results, based on technologies which have
advanced enormously over the past few years [1, 8, 26]. Therefore,
we believe an updated and expanded investigation is still needed.



Figure 2: A visual model of the problem we target. The overall task performance for each scenario will be a result of the different errors introduced:
by reducing the dataset to two or three dimensions and by using a desktop-based 2D, desktop-based 3D or immersive visualization approach.

In this paper, we build upon the results of an initial pilot study
[29]. Herein, we introduce a new model of the problem in hand,
accounting for the two different factors that influence in the final
task performance outcome (Fig. 2). We argue that the performance
gains attained in a task are not just a function of the difference in
perceptual accuracy presented by users under different visualization
conditions, but rather of its interplay with the difference in errors
introduced by reducing the dimensions of a particular dataset to
two or three dimensions. This so called DR error component is
dataset-dependent, depending on the particular complexity of the
data structure. This means that, for a given dataset to benefit from a
three-dimensional visualization condition, its content must be indeed
well mapped to 3D. Moreover, the user must be able to perceive
this added information appropriately, what can be challenging given
the previously discussed issues associated with three-dimensional
representations.

Based on this model, we propose an evaluation framework that
aims to separately assess each of these variables. The maximum
potential performance in 2D or 3D for our datasets is estimated
through a task-based empirical approach. The perception and over-
all task errors, on the other hand, are assessed through a user study,
comparing three alternative visualization conditions: desktop-based
2D (2D), desktop-based 3D (3D) and HMD-based immersive 3D
(IM). Participants are subjected to a set of analytical tasks for two
selected datasets, one with previously detected promised improve-
ments in 3D (D1), and another one that, in theory, allows for similar
performance in all representations (D2).

Our main contributions are: (1) an improved modeling of the
problem in hand, (2) a task-based evaluation framework, (3) results
from a comparative user study with 30 participants, and (4) reported
user behavior and feedback for the proposed solution.

The remainder of this work is structured as follows. In Section
2 we briefly review related work. We introduce our evaluation
framework in Section 3, while results are presented in Section 4 and
discussed in Section 5. Section 6 presents our final remarks.

2 RELATED WORK

2.1 Immersive Analytics
Immersive Analytics [5] is an ever-growing research area in the
visualization community, concerned with applying novel display
and interaction resources in combination to support immersive data
visualization, and to improve the performance of typical analyti-
cal tasks. Early works in this area, starting in the 90’s, explored
the use of small spaces surrounded by retro-projected walls, de-
nominated CAVEs [23]. Here, however, we are concerned about
HMD-based environments, considering that the current technology
provides adequate immersive capabilities with much more accessible

requirements, both in terms of cost and space, and its exploration in
the Infovis literature is still incipient. Donalek et al. [10] presented
a very interesting early work in this direction. They implemented
iViz, a platform for visualization of multidimensional data using
an Oculus Rift HMD and a Leap Motion sensor for interaction. In
their application, up to 8 data dimensions are mapped to different
attributes of points in a 3D scatterplot.

Garcia et al. [13] discuss the great success already achieved by
immersive applications in the scientific visualization context [6, 11],
while abstract and multidimensional data visualization stayed behind.
They point out, however, several cases of successful VR application
to non-spatial data, for example in genomics, as encouragement for
further explorations. Another field that has presented promising
results for the application of immersive approaches is graph visu-
alization. Ware and Mitchell [31] observed an order of magnitude
increase over 2D displays in a path tracing task, using high resolution
displays and a mirror stereoscope. Halpin et al. [17] also obtained
significant performance improvements for fine-grained questions
using a CAVE-like environment. Kwon et al. [22] explored different
techniques in an HMD-based environment, proposing the use of a
new spheric layout that offered performance increase especially for
more difficult tasks. Cordeil et al. [7] presented a comparative study
between CAVE-style and HMD-based environments for collabora-
tive analysis of graphs, and were able to obtain high accuracy scores
in both. Users in the HMD condition, nonetheless, were found to be
substantially faster.

Zielasko et al. [33], who also explored a use case with graph
analysis, presented an interesting discussion on the challenges and
opportunities of an immersive analytical scenario named deskVR,
where the user remains seated in his office chair during the immersive
exploration of data. They believe that an immersive solution must be
easily integrated to the analyst’s workplace and workflow in order
to be really adopted, and that the transition between real and virtual
worlds must be seamless, so that the analyst may combine 2D and
3D environments according to the requirements of each specific task.

2.2 Dimensionality Reduction and 3D Scatterplots

In order to visualize very high dimensional data, we explore the use
of dimensionality reduction (DR). DR methods aim to generate a
more compact version of the information, yet maintaining the same
characteristics of the original dataset. A popular example is the
Principal Component Analysis (PCA) [19], a linear method which
aims to position distant points in the original dataset far apart in
the lower dimensional representation. Despite presenting several
important applications, such as feature selection for algorithmic
input, DR techniques are predominantly used for data visualization.

The use of three-dimensional representations, such as scatterplots,



has been discussed for a long time in the literature. Ware [30], in
his thorough discussion on spatial representations and depth cues,
argued that the only two cues likely to be useful in a 3D scatterplot
are stereoscopic depth and structure-from-motion (motion paral-
lax and kinetic depth effect). The first should be more helpful to
differentiate depths between near points, while the latter to differ-
entiate more distant ones. Some authors have specifically investi-
gated the use of monoscopic 3D scatterplots for visualization of
dimensionally-reduced data, but results have been mixed. Gracia
et al. [15] performed a user study evaluating point classification,
distance perception and outlier detection tasks, and also applied
several quality loss metrics from previous literature to affirm the
advantage of using a third dimension. Sedlmair et al. [27], on the
other hand, performed a data study where two annotators evaluated
around 800 scatterplots in relation to cluster separability, and con-
cluded that the interactive 3D versions never outperformed the 2D
scatterplots (individually or in matrices), especially considering the
added interaction cost. However, one should note that both works
target different analytical tasks – this being compatible with our
argument for a task-based evaluation.

Concerning immersive environments, Arms et al. [1] performed a
comparative evaluation of the visualization of multidimensional data
projected to two and three dimensions, achieving better cluster iden-
tification results in the virtual environment and serving as inspiration
for our study. However, they explored a CAVE environment, and
suffered from heavy technological limitations at the time, especially
regarding interaction. Raja et al. [26] also explored the application of
immersive VR to 3D scatterplots in a CAVE environment, observing
favorable results when including large field-of-regard, head-tracking
and stereopsis. Their user study, however, was very initial, with only
four subjects. A later study with 32 users was performed with similar
indications, but failed to present statistical significance [25]. Babaee
et al. [2] proposed a new metric to compare DR techniques in terms
of structure preservation, based on a communication channel model.
They visualized datasets of images reduced to three dimensions in
immersive CAVE-like environments.

In a preliminary pilot study [29], we obtained results and feedback
that indicated clear issues with the implementation, the protocol
and the unstructured evaluation methodology, leading to our much
improved problem modeling and a more controlled experiment. In
that study we also used Razer Hydra controllers, which were now
replaced by a more accurate alternative.

3 EVALUATION FRAMEWORK

In this section we describe the evaluation framework designed to
assess the two errors that may affect the overall task performance.

3.1 Hypotheses
We defined five hypotheses for our evaluation purposes. As men-
tioned before, D1 is a dataset that presents potential information
gain in 3D, and D2 one that does not.

H1 The perception error will be smaller in IM than in 3D, specially
due to the stereopsis.

H2 The overall task error in IM will be smaller than in 3D or 2D
for D1.

H3 The overall task error in IM will be at least as good as in 3D or
2D for D2.

H4 2D is expected to be the quickest, given its inherent smaller
cost for navigation and interaction.

H5 The benefits provided by immersion, such as a more natural
interaction and an egocentric view of the data [5], will be
reflected on the subjective user evaluations.

3.2 Targeted Data
In this work, we visualize roll call voting data from the Brazilian
Chamber of Deputies. We consider this domain very appropriate

for our goal in this work due to the very high dimensionality of
its datasets (each roll call is a dimension), its consistent applica-
tion of DR techniques in the literature (a survey was published by
Spirling and McLean [28]) , and the easy definition of semantically
meaningful analytical tasks.

We extracted information about the votes of each deputy and
the official vote instruction given by each party represented in the
Chamber for every roll call in the last four four-year legislatures
from the Brazilian Congress: 52nd (451 roll calls), 53rd (619 roll
calls), 54th (428 roll calls) and 55th (493 roll calls). For each
legislature, we constructed a voting matrix where all deputies and
parties are represented by M lines, and roll calls are represented
by N columns. Each (i, j) cell is then attributed a value depending
on the ith deputy or party vote on the jth roll call: -1 for “no”,
1 for “yes” or 0 for abstention or absence. Following previous
works [9, 20], Principal Component Analysis (PCA) by Singular
Value Decomposition [14] is then applied to this matrix, resulting in
min(N,M) principal components. For visualization purposes, only
the first two or three are considered, and seen as a political spectrum.
Euclidean distances in these representations indicate how similarly
or differently deputies have voted in the given period.

3.3 Analytical Tasks
The axes in a scatterplot obtained from a DR method correspond
to artificial, uncorrelated dimensions synthesized by an algorithm
and, in general, have no semantic meaning. Instead, all information
presented is encoded through the distance between points in the scat-
terplot. Our set of defined analytical tasks is thus composed of tasks
relative to different competencies in distance judgments: perception
of near, medium and far distances. All tasks were designed to be
simple and atomic (i.e., combinable for more complex analyses), but
we believe they constitute a representative subset of the typical tasks
of a data analysis in this specific domain.

T1 Selection of a deputy’s closest deputy. In this near-distance per-
ception task, the user is requested to select the closest deputy
to a given one.

T2 Selection of a deputy’s closest party. A more difficult variation
of the previous task (since deputies are usually positioned
between multiple parties), where the user is requested to select
the closest party to a given deputy. It can also be seen as a point
classification task, where the user is reclassifying deputies in
parties according to vote coherence.

T3 Identification of party outlier. In this task, the user must iden-
tify the member of a specific party which is furthest located
from the official party position.

T4 Selection of a party’s closest party. Also a variation of T1,
but exploring different competencies since parties are more
distributed on the spectrum.

3.4 Task-Based DR Error Assessment
The efficiency of a DR method when representing a dataset in a lower
dimension is highly dependent on the data geometry. This implies
that, while some datasets will benefit from an extra dimension, others
will already be well represented in 2D. In fact, several metrics try to
quantify the information gain of adding a third dimension to a DR
data scatterplot. Gracia et al. applied 11 metrics in their study with
12 DR algorithms and 12 real-world datasets to affirm that the loss of
quality when reducing from 3 to 2 dimensions accounts, in average,
for 30.4% of the total DR loss [15]. A simple and commonly used
metric in the case of PCA is the proportion of variance contributed by
each principal component, given by its eigenvalue. This information
is usually plotted in a scree plot (see Fig. 3) and used to estimate the
dataset intrinsic dimensionality.

However, from a practical point of view, it is generally difficult
to estimate how the information loss from 3D to 2D, even if it exists,



Figure 3: Scree plot of the proportion of variance contributed by each
of the 5 first principal components in our 4 datasets.

will impact on the user’s analytical performance. Moreover, it is
hard to conjecture whether the trade-off between information loss
and the clearer and simpler visualization provided by 2D is worth it.

We approach this issue in an empirical, task-based way, by com-
puting a user’s maximum potential performance in 2D and 3D. This
is done by simulating the minimum average error a user would
achieve in each scenario if he/she were able to perceive the pre-
sented information with absolute accuracy, for all possible instances
of a task. For example, if the task is selecting the closest deputy to a
given one (T1), the correct answers to all 513 deputies according to
the information presented in 2, 3 or all dimensions are calculated and
compared. Euclidean distances between points in the corresponding
set of dimensions are used, and average errors are always calculated
in the original vote matrix.

Fig. 6 presents results for our four datasets over the different tasks
introduced in Sect. 3.3. As expected, different legislatures result in
different potential contributions for the third dimension. We identify
two particular scenarios: for the 54th legislature, all tasks appear
to benefit from its inclusion – for T1, T2 and T3, it is the dataset
with the largest performance improvement (observing Fig. 3, this
was indeed the dataset with the smallest variance explained by the
two first components combined). For the 52nd legislature, on the
other hand, all tasks appear to be equally well performed in both
scenarios – for T1, T2 and T4, it is the dataset with the least gain.
From now on, we will refer to these datasets as D1 (54th legislature)
and D2 (52nd legislature). In the remaining of this paper, we will
assess how the task performance is affected by the user perception
of the third dimension (under desktop and HMD-based conditions)
in both of these cases.

3.5 User Study: Perception & Overall Error Assessment
3.5.1 Visualization Conditions
The implementations for our three studied visualization conditions
are based on those used in our pilot study, and were updated to
include feedback provided by the participants. Both two and three
dimensional virtual environments (VEs) were implemented using
the Unity game engine. The 3D version can be explored either
through desktop-based (monoscopic, non head-tracked) or HMD-
based (stereoscopic, head-tracked) setups.

In both desktop-based VEs, explored through a 22” 1080p display,
controls were implemented using only mouse and keyboard, as in
a traditional data analysis setup. In IM, our implementation choice,
looking for providing a more natural and immersive interaction,
was to use two selection rays, which are controlled by position-
tracked Oculus Touch hand controllers (see Fig. 1). Accurate virtual
representations of the users’ hands and of the controllers are also
shown, increasing the feeling of embodiment and serving as anchors
to the real world [33]. This environment is explored through an
Oculus Rift CV1 HMD (formed by two 1080×1200 displays), with
the user seated in a swivel chair. Several guidelines were employed
to minimize possible discomfort: the speed of movement is slow
and constant; user control of the camera is maximized; no near
ground was included to avoid uncomfortable rapid ground plane

Figure 4: In the 2D condition, data points are distributed along screen
space (left), and the user is allowed to zoom and pan (right).

Figure 5: In the 3D conditions, the user is allowed to freely navigate
through the data, which is distributed along a 3D virtual environment.

changes; and adequate hardware was employed to minimize latency
and lag. In the event of teleportation to a new position, such as in
the beginning of a task, a camera fade is also applied [32].

All VEs explore the same visual encodings: colors for politi-
cal parties and shape for different categories of points – circles or
spheres for deputies and squares or cubes for official parties posi-
tions. They also all offer the same set of possible interactions: a user
may click on a point to show/hide its name (using double click or a
specific button in the controller) and may highlight the whole party
of any point to inspect its relative position (using right click or the
inner trigger in the controller, to emulate a grabbing action). Labels
are shown upon selection during the familiarization phase, to aid in
the comprehension of the representation semantics. During the tasks,
they remain hidden to avoid potential use of previous knowledge.

The setups differ, however, in the forms of navigation and interac-
tion. In 2D, the user can zoom in/out and pan the screen (see Fig. 4).
In both 3D versions (see Fig. 1 and Fig. 5), the user can navigate
freely in all directions, through gaze-directed flying [24]. He/she is
allowed to move forwards, backwards, vertically or laterally, using
keyboard keys or the left controller joystick, and also rotate the cam-
era, moving the mouse or using the right controller joystick. This
metaphor is meant to be simple to learn [3] and enable an egocentric
view, placing the user inside the data representation.

Moreover, while, in 2D, selection is done by the mouse cursor
and, in IM, by the pointer rays, in 3D, it is also gaze-directed, im-
plemented by a reticle cursor in the center of the screen, so that the
mouse movement can be used to rotate the camera. The 3D environ-
ments also include a ground and sky background and illumination
from above for orientation purposes [16].

3.5.2 Experiment Design
Our user study was implemented through a within-subjects protocol,
combining 3 visualization conditions x 4 tasks x 2 datasets. The
target population, recruited on campus, was composed of 30 subjects



Figure 6: Results of our task-based analysis of the minimum potential average error a user could achieve both in 2D (blue) and 3D (green), were
he/she always capable of perceiving accurately the distances represented. Error bars present the corresponding standard deviations.

(20 male/10 female; average age of 25.2, ranging from 17 to 50), who
had not taken part in the pilot study. Regarding previous contact with
involved technologies, 76% reported at least average familiarity with
first person games and gamepads, and 60% with motion controllers.
However, 60% had low or no familiarity at all with HMDs.

Each participant experienced all conditions in alternating order, to
minimize learning biases. The subject was always initially allowed
to get familiar with the corresponding controls while exploring the
55th legislature dataset. Then, he/she was asked to perform, as ac-
curately as possible and without specific training, each of the tasks
described in Sect. 3.3 six times in a row, being three in dataset D1
and three in D2. The order of presentation of the datasets in each task
is alternated between users, but task order is preserved. Between
different conditions, the scatterplots are mirrored with relation to
the vertical and/or horizontal axes, so as to minimize the possibility
of using previously viewed information. The specific task questions
presented were selected as follows: for each task and dataset, 10
different sets of 9 points were randomly selected (3 for each con-
dition). Each of these sets was used by three users, alternating the
conditions, so that, in the end, every point selected once in one con-
dition was also selected once in the others. The purpose of selecting
multiple sets of random points instead of just one is to maximize
the representation of different possible situations in the data, and to
cross validate the results [15]. Also to maximize representation, in
tasks involving deputies, repetition was not allowed even between
sets (this way, these tasks explore 90 out of the 513 possible deputy
points) – for party tasks, this is not possible due to their smaller
number, and so repetition is not allowed just inside the sets.

In all tasks, one point is shown blinking, and the user must point
and click to choose the corresponding answer. Following previous
experiences from our pilot study, we opted to block semantically
impossible answers (e.g. a party outlier that is not from the given
party), so as to reduce noise resulting from accidental clicks or
misunderstandings. When this is the case, the user hears a negative
audio feedback. Otherwise, a positive sound is played, and the
camera is teleported back to the initial overview position.

After each technique, subjective opinion questionnaires were
applied, including usability-related (SUS) questions [4]. SSQ [21]
was applied pre and post VR exposure to evaluate well-being effects.
In the end, users were also allowed to compare all the techniques
according to different criteria. The complete experiment took about
45 minutes.

4 RESULTS

4.1 Quantitative Results

4.1.1 Perception Error

Perception errors were calculated as the differences in Euclidean
distances, in two or three dimensions, between the one from the

given point to the user’s answer and the one to the correct answer in
the representation. They refer, therefore, to the errors with relation
to the information shown, and not to the original data. The better
the user was able to perceive the distances in the representation,
the closer to zero this error will be. Fig. 8 presents results for all
tasks (in this analysis, we do not differentiate between datasets).
Since we were not able to verify normality under Shapiro-Wilk tests,
non-parametric Friedman tests were executed. Post-hoc tests are
implemented using the Wilcoxon-Nemenyi-McDonald-Thompson
test [18]. Surprisingly, no significant differences were observed in
any task (p-values .8, .5, .8 and .4, respectively), neither between 3D
and IM nor between both and 2D. H1 was, therefore, not confirmed.

4.1.2 Overall Task Error

Overall task errors were calculated as the differences in Euclidean
distances, in the original vote matrix, between the one from the
given point to the user’s answer and the one to the correct answer in
the real multidimensional data set. They are expected, therefore, to
be the combination between the expected DR errors seen in Fig. 6
and the perception errors seen in Fig. 8. The results for all tasks
in D1 and D2 are shown in Fig. 7. Friedman and the Wilcoxon-
Nemenyi-McDonald-Thompson post-hoc tests were again used, and
the significant pairwise differences, when found, are indicated with
red lines.

For D2, no task presented significant differences between con-
ditions (p-values .6, .6, .93 and .85, respectively). This confirms
our hypothesis H3, i.e., IM is at least as good as 2D for the dataset
that has the least expected information gain with the use of the third
dimension. D1, on the other hand, presented significant differences
for all tasks except T3, which can be considered almost significant
(p-values were .002, .007, .06 and .01). All indicated pairwise dif-
ferences presented p < .01. In T2, 2D and IM presented a trend
of significance with p = .08. Notably, however, H2 could not be
confirmed, since 3D and IM were never significantly different.

4.1.3 Task Completion Time

As expected in H4, 2D was significantly faster in time than the two
other conditions in all tasks (always with p < .001). 3D and IM did
not present significant differences with each other in any case.

Distance perception tasks T1 and T4 were the quickest to be
solved, with average times of 8.4s, 23.1s and 26.2s for 2D, 3D and
IM in the former, and 8s, 16.3s and 15.8s for the latter. The outlier
identification and classification tasks took longer, especially in the
3D conditions. This was already expected due to their higher diffi-
culty, since frequently there are multiple possible answers (observe
Fig. 4, Fig. 5 and Fig. 1 (right)). Average times were 10.5s, 29.8s
and 33.1s for T2, and 10.5s, 23.6s and 30.2s for T3.



(a) D1 (b) D2

Figure 7: Overall task errors (w.r.t original data) observed for each dataset. Asterisks and red lines indicate occurrence of statistical significance.

Figure 8: Results for perception errors under the different conditions
and tasks. They are given by the average differences between the
Euclidean distances from the task point to the user answer and to the
correct one, in two or three dimensions.

4.2 User Behavior

4.2.1 Navigation Patterns

The monitoring of user navigation patterns in both three dimensional
conditions showed that navigated distances were consistently longer
in 3D in comparison to IM. More specifically, they were 18% longer
in T1 (p = .01, under a paired Wilcoxon signed-rank test), 20%
longer in T2 and T3 (p = .03 and p = .07, respectively), and 30%
longer in T4 (p = .004). This was not reflected in faster completion
times, as seen previously, probably due to the slower navigation
speed adopted in the immersive scenario, or because we did not
ask users to care about the time. Many users complained about the
slow speed and not being able to increase it, but we believe this
contributed to minimize the occurrence of simulator sickness.

Similar behaviors were also observed in terms of accumulated
camera rotation, which was 48% larger for 3D in T1 (p = .0004),
23% larger in T2 (p = .1) and 38% larger in T4 (p = .003). The only
exception was T3 (rotation 8% smaller, p = .62), what is explained
by the different nature of this task (perception of long distances).

Considering that our protocol ensures that a task performed in
one condition will always be performed by another user in the other
conditions, these differences are not related to task difficulty, but
to the interaction and visualization techniques themselves. The
enabled navigation forms were also similar in both conditions. The
rotation difference may be partly due to the different fields-of-view
(FOV) in both scenarios (60 degrees in 3D and 96 in IM). Another
plausible explanation for navigation and rotation variations may
reside, however, in the different depth cues provided. As discussed
by Ware [30], a very important cue for the inspection of clouds of

points, besides stereopsis, is structure-from-motion.
Finally, navigated distance was also found to be, as expected,

consistently inversely correlated with perception error, particularly
for 3D. Pearson correlations between the two metrics were -0.66 and
-0.49 for 3D and IM, respectively. While at least three users were
observed to develop the strategy of assuming points positions to
obtain egocentric perceptions of distance, most adopted allocentric
points of view.

4.2.2 Hand Usage

Considering specifically the immersive condition, we were partic-
ularly curious about how users would adapt to the two-handed em-
bodied interaction metaphor. All hand movements and interactions
(point selections and party highlights) were thus recorded. Observed
right hand use was much more pronounced, as was already expected
given that only one participant had reported being exclusively left-
handed. Nonetheless, an interesting result was that hand usage varied
according to the task requirements. Average numbers of interactions
with the left and right hands were, respectively, 1.1 and 7.7 for T1,
1.0 and 8.7 for T2, and 1.0 and 6.3 for T4 (ratios of 6.6, 8.4 and
6.1). For T3, where a common approach was to highlight the party
with one hand and select the party outlier with the other (see Fig. 1
(right)), this changed to 4.2 and 13.8 (a ratio of 3.2, less than half of
the other tasks). Moreover, while in T1, T2 and T4, less than 30%
used both hands to interact, in T3 this was done by 63% of the users.

Another interesting observation was that the differences in aver-
age hand movement were much smaller than the ratios in effective
interactions, suggesting the users consistently moved both hands
together despite using one of them much more frequently. Average
hand translation per task was about 1.0 meter for the left hand, and
1.2 meters for the right one.

4.3 User Feedback
4.3.1 Preferences and Usability

All visualization conditions were well rated with relation to usability,
without significant differences (p = .11). SUS questionnaire scores
were 81.5 for 2D, 77 for 3D, and 76.6 for IM (standard deviations
12.6, 15.3 and 20.2). We believe this successfully reflected our
efforts to optimize our implementations (in the pilot study, the rat-
ings for the previous versions had been scored 83.1, 61.3 and 68.3,
respectively).

In post-technique interviews for all conditions, at least 75% of the
participants also agreed it was easy to navigate and interact, achiev-
ing 90% in some cases (2D navigation, 3D and IM interactions) (see
Fig. 9). Users appeared to be able to complete the tasks with less
effort in IM, with 24 agreeing that it was easy to find information in
this representation, compared to 21 in 3D, and 16, in 2D. However,



Figure 9: User Likert-scale agreements to the different assertions,
ranging from completely disagree (dark red) to completely agree (dark
green). All techniques were well rated in terms of ease of navigation
and interaction. Noticeably, however, IM was better rated in terms of
ease to find information, and performed as well as 3D for comfort.

no significant differences were found in the Likert-scale questions –
Friedman tests indicated p = .14 for navigation, .26 for interaction,
.15 for information finding and .14 for comfort.

Users were also asked to rank the different experienced conditions
according to different criteria. Interestingly, despite the similar
quantitative results achieved for both 3D and IM, 18 users perceived
IM as the most accurate of all, against only 3 for 3D. 19 users
indicated 2D as the least accurate condition, probably because, with
one less dimension, points were clearly less well distributed in
space. A Friedman test on the mean rankings for accuracy (p = .005)
indicated significant differences between IM and 2D (p = .005) and
near significance between IM and 3D (p = .052), but no significance
between 2D and 3D (p = .71). 2D and IM tied in the dispute for the
title of most intuitive (p = .16), with 13 votes each, what is rather
surprising considering the ubiquitousness of 2D interfaces (actually,
2D was also voted 10 times the least intuitive, versus 7 of IM).

In terms of time, subjective perceptions confirmed the quantitative
observations, with 2D being placed behind both 3D (p < .001) and
IM (p < .001), and no significant differences between 3D and IM (p
= .55). Finally, 25 participants classified IM as the most engaging
condition, compared to 2D (p < .001) and 3D (p = .002). This
is probably related in large part to the novelty of the display and
interaction technologies being used, but may also refer in part to
its sense of immersion and egocentric point of view. Differences
between 2D and 3D were not significant (p = .07).

4.3.2 Simulator Sickness
Simulator sickness is still a major issue in immersive environments,
especially when non-physical navigation is employed. Despite fol-
lowing multiple guidelines (Sect. 3.5.1), we still observed significant
well being effects on part of the subjects. Fig. 10 displays, ordered
from least to most severe, the observed VR exposure impacts on the
SSQ scores [21] for all participants.

Noticeably, while around 60% reported only minor symptoms
(to the left of the red line), the others presented quite significant
discomfort levels. Many users reported that this was minimized
(though not avoided) when employing physical movements, for ex-
ample, to rotate the camera, instead of using the alternative joystick
control. User results did not appear, however, to be impacted by the
occurrence of discomfort, with a Pearson correlation of only -0.1
between SSQ scores and average perception errors in IM.

5 DISCUSSION

The results obtained from the user study offered many insights. The
most surprising was certainly the absence of significant distance per-
ception differences between 2D, 3D and IM, contradicting previous
beliefs about the suitability of monoscopic 3D scatterplots and also
our hypothesis H1. We believe that this is related to the fact that our
desktop-based 3D environment, implemented in a powerful game
engine, does not resemble typical 3D scatterplots. Designed in an
effort to enable a fair comparison with its HMD-based counterpart, it

Figure 10: SSQ score impacts post-VR exposure for all 30 participants,
ordered from least to most severe. Around 60% of them presented
only minor symptoms (to the left of the red line), but others presented
quite significant discomfort levels.

provided game-like first person navigation and a multitude of depth
cues (including perspective, occlusion, shading and structure-from-
motion). As a consequence, both 3D and IM were able to present
the promised information gain for dataset D1, with significant or
almost significant differences to 2D with relation to the original
voting data in all tasks. Both techniques were also able to present
similar performance to 2D in dataset D2. These facts confirmed part
of hypotheses H2 and H3.

Analyzing behavioral and subjective results, however, a series of
differences between 3D and IM appears. An equivalent performance
appears to have taken considerable less effort in the immersive
scenario, given that, under this condition, users were required to
navigate up to 24% less, and agreed more often that information was
easy to find. This could benefit higher-levels tasks, such as cluster
detection, which requires estimating multiple pairwise distances at
the same time – nonetheless, this should be verified by future studies.
Subjectively perceived accuracy was also much larger for IM than
for 3D, despite their similar results. This was also observed during
our post-test interviews, when many participants described being
convinced of a better performance within the immersive scenario.
However, it could be argued that this might potentially generate
over-confidence in incorrect observations. IM was also labeled the
most engaging, what we believe may be, at least in part, linked
to its natural interaction and egocentric point of view, as stated in
our hypothesis H5. Despite around 40% of the users presenting
significant levels of discomfort due to simulator sickness, IM was
also well rated in terms of usability through the SUS questionnaire,
with a similar score to 3D. Task completion times were, as expected
(H4), around 3 times slower in IM than in 2D, due to the navigation
and interaction costs incurred by the third dimension. However, no
significant differences were observed between IM and 3D, despite
the slower navigation provided. It is important to mention that the
time results refer to the particular 3D navigation metaphor employed
(free-flying), and could vary under alternative implementations. We
believe approaches that allow embodied manipulation of the dataset
from a fixed position would sacrifice the egocentric view but mini-
mize time requirements and possibly also the simulator sickness.

We acknowledge that these results are still narrow in the aspect
that we only explored one data domain (roll-call data analysis) and
one DR technique (PCA). Our objective here was not, however, to
assert the universal applicability of immersive scatterplots for the ex-
ploration of multidimensional data. Our point is, instead, to demon-
strate that current off-the-shelf VR technologies may effectively aid
in analytical tasks for abstract information visualization in some
cases, even challenging previous beliefs about three-dimensional
representations. This area is still incipient, and much more work is
still needed to construct more specific guidelines about when IM is
or is not a recommended approach. Here, we proposed a task-based
analysis approach to this end, and comparative user studies for the
assessment of perception errors.

6 CONCLUSION AND FUTURE WORK

In an effort to extend discussions about Immersive Analytics to new
contexts, we presented an evaluation on a particular representation



for multidimensional data: 3D scatterplots obtained using PCA. We
modeled the overall visualization task error as the result of the com-
bination between the error introduced by dimensionality reduction
and the one introduced by human perception. Through a task-based
empirical approach, we selected two different datasets in the domain
of roll call analysis: one with promising information gain in 3D and
one without such gain. In a user study, we observed that perception
errors were similarly low both in desktop-based and HMD-based
conditions. Task performance was therefore improved with the addi-
tion of the third dimension regardless of immersion, when the data
enabled so. Nonetheless, the HMD-based condition required smaller
effort to find information and less navigation, besides offering a
much larger subjective perception of accuracy and engagement.

As future work on this topic, we plan to implement new compar-
ative evaluations, focusing on different tasks or data domains, and
to improve our immersive environment to mitigate user discomfort
and minimize completion times (for example, exploring different
navigation metaphors). Moreover, we intend to expand our study
into other forms of immersive information visualization, aiming to
broaden the discussion about this important application field.
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